Keyword Spotting for Hearing Assistive Devices Robust to External Speakers

Iván López-Espejo¹, Zheng-Hua Tan¹ and Jesper Jensen¹,²
¹Department of Electronic Systems, Aalborg University, Denmark
²Oticon A/S, Denmark
{ivl,zt,jje}@es.aau.dk, jesj@oticon.com

Introduction and Motivation

- Keyword spotting (KWS) may allow a hearing impaired person to initiate certain actions on her/his hearing assistive device (HAD), e.g., increasing the volume.
- KWS systems for HADs must...
 - ...have low memory and computational complexity (small-footprint).
 - ...be robust against external speakers, that is, the user must be the only one allowed to trigger actions on her/his HAD.
- In general, current KWS systems are speaker-independent.
- We propose HAD user (speaker)-dependent KWS drawing from a state-of-the-art small-footprint KWS system based on deep residual learning and dilated convolutions (res15) [1].

Experimental Framework

- We create a two-microphone hearing aid speech database from the Google Speech Commands Dataset (GSCD) [2].
- HAD user own-voice signals are generated by filtering 75% of the GSCD through a single own-voice transfer function (OVTF).
- External speaker signals are created by filtering the remaining 25% of the GSCD through head-related transfer functions (HRTFs).
- Speakers do not overlap across the training (80%), validation (10%) and test (10%) sets.
- Apart from the unknown word class, 10 keywords are considered: “yes”, “no”, “up”, “down”, “left”, “right”, “on”, “off”, “stop” and “go”.

Multi-task Learning for KWS and Own-Voice/External Speaker Detection

- Two tasks: KWS and own-voice/external speaker detection.
- We experimented with dynamic task prioritization for loss weight selection.
- The sigmoid layer outputs a probability that the input MFCCs correspond to an utterance said by the HAD user.
- KWS prediction from MFCCs is considered if and only if the sigmoid layer output is above 0.5.

Results

- Accuracy results (%) with 95% confidence intervals.
- Left plot: Detection error trade-off curves for own-voice/external speaker detection.
- Right plot: External speaker detection accuracy as a function of the position (angle) of external speakers.

Observations:
- The OVTF and HRTFs are more similar (in terms of MFCC Euclidean distance) at angles where we see a relative drop in performance (right plot).
- Own-voice/external speaker detection is crucial for good KWS performance (check overall vs. own-voice subset KWS accuracy).

Conclusions

- Proposed approach outperforms state-of-the-art small-footprint KWS systems with a negligible increase in the number of parameters of the model.
- Code available at http://www.ugr.es/~iloes/codes/MultitaskKWS.zip

References