Exploring Filterbank Learning for Keyword Spotting

Iván López-Espejo\(^1\), Zheng-Hua Tan\(^1\) and Jesper Jensen\(^1,2\)

\(^1\)Department of Electronic Systems, Aalborg University, Denmark
\(^2\)Oticon A/S, Denmark

\{ivl,zt,jje\}@es.aau.dk, jesj@oticon.com

Monday 18\(^{th}\) January, 2021
Overview

1. Introduction
2. Filterbank Learning for Keyword Spotting
3. Experimental Framework
4. Results
5. Conclusion
Handcrafted speech features (e.g., MFCCs) are not necessarily optimal for any particular speech processing task.

Recent trend: development of end-to-end deep learning systems where the feature extraction process is optimal according to the task and training criterion.

For some applications, optimal filterbank learning has shown improvements with respect to using a standard Mel filterbank:
- *Speaker verification anti-spoofing*
- *Audio source separation and audio scene classification*
- ...
Introduction

Objective

- To explore the possible advantages of employing *learned filterbanks* over *handcrafted speech features* for *keyword spotting* (KWS):
 1. Filterbank matrix weight learning in the power spectral domain;
 2. Parameter learning of a (psychoacoustically-motivated) gammachirp filterbank.

For both 1 and 2, the learnable filterbank parameters are optimized by backpropagation jointly with the KWS back-end!
Filterbank layer: \(\hat{X} = X \cdot h(W) \)

- **W** is the learnable filterbank matrix.

- \(h(\cdot) = max(\cdot, 0) \) is the element-wise applied ReLU function to ensure the positivity of the filterbank weights.
Filterbank Learning for Keyword Spotting

Gammachirp Filterbank Learning

- **Gammachirp filterbank:**
 \[g_c(t, k) = a_k t^{n-1} e^{-2 \pi b \text{ERB}(f_k) t} \cos(2 \pi f_k t + c \log(t) + \phi) \]

- At moderate stimulus levels, \(\text{ERB}(f_k) = 24.7 + 0.108 f_k \) [Hz]

- **Gammachirp filterbank layer:** \(x_k(t) = x(t) \ast g_c(t, k) \)

- **Trainable parameters:** \(a_k, n, b, c, f_k \) and the ERBs.

- To preserve their physical meaning, the ReLU function is applied to \(a_k, b, f_k \) and the ERBs, whereas \(n \) is constrained to be \(\max(n, 1) \).
We use the Google Speech Commands Dataset (GSCD) for KWS experiments:

- 105,829 one-second long speech files
- Each file comprises one word among 35 possible candidate words

A deep residual neural network-based KWS back-end\(^1\) is trained to spot the 10 keywords “yes”, “no”, “up”, “down”, “left”, “right”, “on”, “off”, “stop” and “go”.

Utterances with the remaining 25 words of the GSCD (i.e., non-keywords) are used to define the **filler class** ⇒ the KWS back-end has to solve an **11-class classification problem**.

\(^1\)R. Tang and J. Lin, “Deep residual learning for small-footprint keyword spotting,” in *Proc. of ICASSP 2018*
The number of filterbank channels is 40.

The back- and front-end are trained using categorical cross-entropy and Adam.

As a KWS performance metric, we employ **accuracy**: the ratio of the number of correct predictions over the total number of them.

Accuracy results are provided along with 95% confidence intervals calculated from outputs of 10 different back-end realizations trained with different random parameter initialization.
Results

Filterbank Matrix Learning

- **W** is initialized by a Mel filterbank.

- Naming FxB_y_z:
 1. x \in \{t, f\} indicates whether the front-end is trained, t, or not, f.
 2. y \in \{t, f\} is the same, but for the back-end.
 3. z is the number of training epochs.

<table>
<thead>
<tr>
<th>Test</th>
<th>Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FfBt_26 (log-Mel)</td>
<td>95.64 ± 0.33</td>
</tr>
<tr>
<td>FtBt_26</td>
<td>95.73 ± 0.24</td>
</tr>
<tr>
<td>FfBt_26 + FtBf_10</td>
<td>95.73 ± 0.38</td>
</tr>
<tr>
<td>FfBt_13 + FtBt_13</td>
<td>95.30 ± 0.82</td>
</tr>
</tbody>
</table>
Results

Gammachirp Filterbank Learning

- Naming GC[x]-ly-z:
 1. $x \in \{t,f\}$ indicates whether the front-end is trained, t, or not, f (back-end is always trained).
 2. $y \in \{c,r\}$ refers to the initialization of n, b and c, which can be constant, c, or random, r.
 3. z tells whether f_k and the ERBs are initialized by a Mel or a linear scale.

<table>
<thead>
<tr>
<th>Test</th>
<th>Accuracy (%)</th>
<th>n</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>GT[t]_1c-Mel</td>
<td>95.47 ± 0.36</td>
<td>4</td>
<td>1.019</td>
<td>0</td>
</tr>
<tr>
<td>GT[f]_1c-Mel</td>
<td>95.45 ± 0.58</td>
<td>4</td>
<td>1.019</td>
<td>-1</td>
</tr>
<tr>
<td>GC[t]_1c-Mel</td>
<td>95.12 ± 0.42</td>
<td>4.69 ± 0.07</td>
<td>0.976 ± 0.015</td>
<td>-0.84 ± 0.05</td>
</tr>
<tr>
<td>GC[t]_1c-Linear</td>
<td>95.19 ± 0.52</td>
<td>4.44 ± 0.05</td>
<td>0.866 ± 0.019</td>
<td>-0.88 ± 0.02</td>
</tr>
<tr>
<td>GC[t]_Ir-Mel</td>
<td>94.68 ± 0.52</td>
<td>4.90 ± 0.51</td>
<td>0.976 ± 0.115</td>
<td>-0.97 ± 0.32</td>
</tr>
<tr>
<td>GC[t]_Ir-Linear</td>
<td>94.93 ± 0.45</td>
<td>4.65 ± 0.41</td>
<td>0.861 ± 0.075</td>
<td>-0.98 ± 0.38</td>
</tr>
</tbody>
</table>

Same KWS accuracy trends when using lighter back-end models!
Results
Feature Fusion

- In speech acoustic modeling: Sainath et al. achieve to beat log-Mel features only by fusing learnable front-end features with them \(\Leftarrow \text{it is unclear if this improvement is statistically significant!} \)

<table>
<thead>
<tr>
<th>Test</th>
<th>Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FfBt_26 (log-Mel)</td>
<td>95.64 ± 0.33</td>
</tr>
<tr>
<td>GC[t]_Ic-Linear</td>
<td>95.19 ± 0.52</td>
</tr>
<tr>
<td>Fusion</td>
<td>95.65 ± 0.43</td>
</tr>
</tbody>
</table>

- The learned gammachirp filterbank conveys no additional information for KWS.
- Other fusion combinations lead to the same conclusion.

\(^{2}\)T. N. Sainath et al., “Learning the speech front-end with raw waveform CLDNNs,” in Proc. of Interspeech 2015
Is the filterbank and, in general, the speech feature design actually a crucial part of modern KWS systems?

Using log-Mel features:

KWS systems are fed with a great amount of redundant information.

This gives clues on why the performance of learned filterbanks and handcrafted speech features is comparable.
We have explored two different filterbank learning approaches for keyword spotting.

In general, there are no statistically significant differences in terms of KWS accuracy between using a learned filterbank and handcrafted speech features ⇒ the latter are still a good choice when employing modern KWS back-ends.

The above could be a symptom of information redundancy ⇒ new possibilities in the field of small-footprint KWS regarding the design of much more compact speech features.
Thanks for your attention!